Mark Scheme (Results)

November 2019

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2019
Publications Code 1MA1_1H_1911_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers
Unless otherwise stated, when an answer is given as a range (e.g $3.5-4.2$) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

11 Number in brackets after a calculation
Where there is a number in brackets after a calculation E.g. $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas

Some numbers in the mark scheme will appear inside inverted commas E.g. "12" $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets E.g. [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

Misread

If a candidate misreads a number from the question. Eg. uses 252 instead of 255 ; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	1080	M1 M1 A1	for method to write one number as a product of prime factors (condone one division error in method chosen), eg. one complete factor tree or $2,2,3,3,3$ or $2,2,2,3,5$ or for listing at least 5 multiples of either number (condone one error) or for any common multiple $(\neq 1080)$, eg. $12960(=108 \times 120)$ for method to write both numbers as a product of prime factors (condone a total of one division error) eg. two complete factor trees or $2,2,3,3,3$ and $2,2,2,3,5$ or lists of multiples of the two numbers, at least 5 of each, one of which includes 1080 cao SC: B2 for any product that would lead to 1080, eg. $2^{3} \times 3^{3} \times 5$ or $12 \times 9 \times 10$	Accept first 5 multiples if all correct or one error in the first 6 multiples For the list not containing 1080, accept first 5 correct multiples or one error in the first 6 multiples

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
2	2(supported)	$\begin{aligned} & \mathrm{P} 1 \\ & \mathrm{P} 1 \end{aligned}$	for a process to find the number of men, eg. $(60 \div 2) \div 3(=10)$ for a process to find the number of children, eg. $60-" 30 "-$ " 10 " $(=20)$	$60 \div 3=20 \text { scores no marks }$
		P1	for a start of a process to find the value of n, eg. (" 20 " : " 10 ") $\div 5$ or $20: 10=10: 5$ or " $20 " \div$ " 10 "	Any ratio must come from correct processes to find the number of children and the number of men
		A1	for 2 with supportive working	Award 0 marks for 2 with no correct supportive working Award full marks for 2:1 given as a final answer from correct supportive working
3	$2 \frac{1}{3}$	M1	for either $\frac{7}{4}$ oe or $\frac{4}{3}$ oe	
		M1	for method to find the product, eg. $\frac{7 \times 4}{4 \times 3}$ or $\frac{21 \times 16}{12 \times 12}$ oe or for $\frac{28}{12}$ or $\frac{7}{3}$ oe	
		A1	for $2 \frac{1}{3}$ or an equivalent mixed number	
4	perpendicular line constructed	$\mathrm{C} 2$	for a fully correct construction with all relevant arcs drawn	Perpendicular line segment between P and $C D$ must be within guidelines Accept dotted lines
		(C1	for a perpendicular line drawn from P to the line $C D$ or all relevant arcs drawn)	

Paper: 1MA1/1H					
Question		Answer	Mark	Mark scheme	Additional guidance
		p^{10}	B1		
	(b)	$2 x^{4} y^{2}$	M1 A1	for any two of $12 \div 6(=2), x^{7-3}\left(=x^{4}\right), y^{3-1}\left(=y^{2}\right)$ in a single product or written as a fraction with complete and correct cancelling of at least two terms cao	
		Distance in the range 20 to 23	P1	for a process to draw a bearing of 070°, eg. a line drawn 70° from the North line at P	Accept a line of any length as long as the intention is clear.
	(ii)	Bearing in the range 317 to 330	P1	for a process to work out the distance $P Q$, eg. $12 \times 1.5(=18)$	
			P1	(dep previous P 1) for the process to use the given scale, eg. " 18 " $\div 4(=4.5 \mathrm{~cm})$	Award P3 for Q shown in the correct place on the diagram. 4.5 scores 2 marks provided there is a link to $12 \times 1.5(=18)$
			A1	(dep P3) for distance in the range 20 to 23	Award no marks if no supportive processes
			A1	(dep P3) for bearing in the range 317 to 330	Award no marks if no supportive processes
					Award A0A0 if Q is not in the correct place

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
11	72	M1 A1	for $\frac{5}{30}=\frac{12}{p}$ oe, eg $\frac{12}{p} \times 30=5$ or $12 \div \frac{5}{30}$ or $5: 30=12: p$ or 1 in $6(30 \div 5)$ counters are yellow, so $12 \times$ " 6 " or using equivalent ratios to $5: 30$, eg. $2: 12$ and $10: 60$ and adding to give $2+10: 12+60$	
			cao	
12	Mistake identified	C1	for a correct mistake identified Acceptable examples all three terms should be multiplied by 2 and not just two of them the 5 should be multiplied by 2 it should be $2 \times T=q+2 \times 5$ should subtract 5 first (before multiplying by 2) Not acceptable examples Should remove the 5 first $2 \times T$ should be $2 T$ should have got rid of the denominator	Accept answers showing a correct first step
13 (a)	$\frac{17 x+2}{3 x(x+1)}$	M1	for a correct common denominator with at least one correct numerator $\text { eg. } \frac{5 \times 3 x}{3 x(x+1)}+\frac{2(x+1)}{3 x(x+1)}$	
		A1	for a single simplified fraction, eg. $\frac{17 x+2}{3 x(x+1)}$ or equivalent eg. $\frac{17 x+2}{3 x^{2}+3 x}$	$\frac{15 x+2(x+1)}{3 x(x+1)}$ gets M1 only
(b)	$(x+y)(x+y+3)$	B1	cao	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
14	5	P1	for process to find the area of the triangle, eg. $0.5 \times(x+4)(x-2)$ oe OR for process to find the area of rectangle and 27.5×2, eg. $(x+4)(x-2)$ and 55	Trial and improvement methods must be fully correct identifying the value of x as 7 (3 marks) or the shortest side as 5 (4 marks)
		P1	(dep P1) for process to expand the brackets and derive a quadratic equation, eg. $x^{2}+4 x-2 x-8=55$ or $0.5\left(x^{2}+4 x-2 x-8\right)=27.5$ oe	
		P1	(dep P2) for complete process to solve the quadratic equation $x^{2}+2 x-63=0$ eg $(x-7)(x+9)(=0)$ or $\frac{-2 \pm \sqrt{2^{2}-4 \times 1 \times-63}}{2 \times 1}$ or $(x+1)^{2}-1-63(=0)$	
		A1	cao SC: B1 for $x^{2}+4 x-2 x-8=27.5$	An answer of 5 with no supportive working gets no marks

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	$\frac{414}{990}$	M1	for $(x=) 0.41818 \ldots$ or $(10 x=) 4.18$ or $4.1818 \ldots$ or $(100 x=) 41 . \dot{8} \dot{1}$ or $41.818 \ldots$ or $(1000 x=) 418 . \dot{1} \dot{8}$ or $418.18 \ldots$	
		M1	for using two recurring decimals with a terminating decimal difference, $\begin{aligned} & \text { eg. }(1000 x-10 x=) 418 . \dot{1} \dot{8}-4.1 \dot{8} \\ & \text { or } 418.18 \ldots-4.1818 \ldots(=414) \end{aligned}$	Accept $\left.\begin{array}{rl} (100 x-x & = \end{array}\right) 41 . \dot{8} \dot{1}-0.4 \dot{1} \dot{8}-18 \ldots(=41.4)$
		A1	$\text { for } \frac{414}{990} \text { oe, eg } \frac{23}{55}$	$\frac{41.4}{99}$ must be simplified to gain the accuracy mark
$16 \quad$ (a)	$2 \sqrt{11}$	M1	for method to multiply numerator and denominator by $\sqrt{11}$ or a multiple of $\sqrt{11}$, eg $\frac{22}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{11}}$	
		A1	$\text { for } 2 \sqrt{11}$	
	$\frac{6+\sqrt{3}}{11}$	M1	for method to multiply numerator and denominator by $2 \sqrt{3}+1$ or a multiple of $2 \sqrt{3}+1$, eg $\frac{\sqrt{3}}{2 \sqrt{3}-1} \times \frac{2 \sqrt{3}+1}{2 \sqrt{3}+1}$	
		M1 A1	(dep) for $\sqrt{3} \times 2 \sqrt{3}=6$ or $2 \sqrt{3} \times 2 \sqrt{3}=12$ for $\frac{6+\sqrt{3}}{11}$ (accept $a=6$ and $b=11$)	

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
17	4	P1	for process to find ratio of corresponding lengths, eg. $\sqrt{4}: \sqrt{9}(=2: 3)$	
		P1	for process to find ratio of volumes, eg " 2 "3: " 3 "3 ($=8: 27$)	
		P1	for " 27 " \div " " " (= $=3.375$)	This may be seen by checking their volume, eg. " 8 " $\times 4(=32)$ and " 8 " $\times 3(=24)$
		A1	for rounding to give an answer of 4 from correct working	An answer of 4 with no supportive working gets no marks

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
18 (a)	Shown	C1	for $\mathrm{f}^{-1}(x)=\sqrt[3]{\frac{x+4}{2}}$ OR for $2 x^{3}-4=50$ OR for substituting $x=3$ to find $\mathrm{f}(3)$ for substituting $x=50$ to show the result giving $\mathrm{f}^{-1}(50)=3$ OR solving for x to give $x=3$ OR for showing that $\mathrm{f}(3)=50$	$(x+2)^{2}$ must be correctly expanded
		C1		
	$x=-1$ and $x=2.5$	P1	for $\operatorname{hg}(x)=(x+2)^{2}$	
		P1	(dep) for start to a process to derive a quadratic equation eg. $x^{2}+4 x+4=3 x^{2}+x-1$	
		P1	for a process to solve the quadratic equation $2 x^{2}-3 x-5=0$ eg $(2 x-5)(x+1)(=0)$ or $\frac{-3 \pm \sqrt{(-3)^{2}-4 \times 2 \times-5}}{2 \times 2}$ or $2\left[\left(x-\frac{3}{4}\right)^{2}-\frac{9}{16}-\frac{5}{2}\right](=0)$	
		A1	for $x=-1$ and $x=2.5$	2.5 or $2 \frac{1}{2}$ or $\frac{5}{2}$ acceptable
19	$\frac{3}{4}$ oe	P1	for a first step to converting to a common base with one correct conversion, eg. $9^{-\frac{1}{2}}=3^{-1}$ or $\frac{1}{3}$ or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe	$9^{-\frac{1}{2}}=3^{-1}$ (or $\frac{1}{3}$) oe or $27^{\frac{1}{4}}=3^{\frac{3}{4}}$ oe seen alone gets the P1
		P1	(dep) for $3^{-1}=3^{\frac{3}{4}} \div 3^{x+1} \mathrm{oe}$	
		A1		

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	graph	$\mathrm{C} 2$	for a translation of the graph by the vector $\binom{-1}{-3}$	Condone graph of $y=\mathrm{f}(-x)$ also being drawn on the grid Correct vector gets 1 mark
		(C1	for a translation of the graph by the vector $\binom{-1}{b}$ where $b \neq-3$ or $\binom{a}{-3}$ where $a \neq-1$	
			or for a translation by the vector $\binom{-1}{-3}$ of 3 or 4 critical points)	
	2, 1	B1		
21	Sketch graph with TP at	B1	for a parabola drawn with intercept at the point $(0,-5)$	
	$\begin{gathered} (0,-5),\left(2+\sqrt{\frac{13}{2}}, 0\right) \\ \text { and }\left(2-\sqrt{\frac{13}{2}}, 0\right) \end{gathered}$	M1	for the start of a method to find the roots of $y=0$, eg. $2(x-2)^{2}-13(=0)$ oe or $(x=) \frac{--8 \pm \sqrt{(-8)^{2}-4 \times 2 \times-5}}{2 \times 2}$	
		M1	(dep) for method to find the roots, eg. $2 \pm \sqrt{\frac{13}{2}}$ oe	
		B1	for turning point at $(2,-13)$	Turning point may be just seen and labelled on the sketch
		C1	for a fully correct parabola drawn with turning point at $(2,-13)$ and intercepts at $(0,-5),\left(2+\sqrt{\frac{13}{2}}, 0\right)$ oe and $\left(2-\sqrt{\frac{13}{2}}, 0\right)$ oe clearly shown	

Q10(a)

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 1H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H			
	stion	Modification	Mark scheme notes
2		Wording changed to 'Using the information work out the value of n.'	Standard mark scheme
4		P moved 1 cm to the left.	Standard mark scheme
5		Diagram enlarged. Wording added 'Angle $\mathrm{BAC}=75^{\circ}$ Angle $\mathrm{ABC}=51^{\circ}$.' Angles moved outside of the angle arcs and angle arcs made smaller.	Standard mark scheme
8		North lines made 9 cm . Scale moved above the diagram. Changed the scale from ' 1 cm represents 4 km ' to ' 1 cm represents 2 km .'	Standard mark scheme but note the scale change P1 for a process to work out the distance $P Q$, eg. $12 \times 1.5(=18)$ P 1 for the process to use the given scale eg. " 18 " $\div 2(=9 \mathrm{~cm})$ Award P3 for Q shown in the correct place on the diagram. A1 for distance in the range 20 to 23 A1 for bearing in the range 317 to 330

10		Table left aligned. Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis. Frequency table: $\begin{array}{lc} 20<\mathrm{m} \leq 40 & 5 \\ 20<\mathrm{m} \leq 60 & 10 \\ 20<\mathrm{m} \leq 80 & 25 \\ 20<\mathrm{m} \leq 100 & 35 \\ 20<\mathrm{m} \leq 120 & 40 \end{array}$	Part (a) Standard mark scheme but plots at values shown. Part (b): M1 for $\mathrm{UQ}=90(\pm 2)$ or $\mathrm{LQ}=60(\pm 2)$ or ft their cf graph A1 answer in the range 36 to 44 Part (c): M1 for finding the difference between readings taken from the cf axis at points from a mark of 50 and a mark of 90 eg $30-7.5$ A1 answer in the range $19 / 40$ to $26 / 40$

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
12		MLP only- q changed to m.	Standard mark scheme
13	(a)	MLP only $-x$ changed to y.	Standard mark scheme with letters changed as indicated.
13	(b)	MLP only - x and y changed to e and f.	Standard mark scheme with change of letters as indicated.
14		Diagram enlarged. Triangle vertices labelled $A B C$. Wording ' $A B C$ ' added. Wording ' $B C=(y+4) \mathrm{cm}$ ' and ' $\mathrm{BA}=(y-2) \mathrm{cm}$ ' added. MLP only $-x$ changed to y	Standard mark scheme with change of letters as indicated.
17		Diagram enlarged; model may be provided. Labels removed from inside the shapes and above the containers labelled 'container A' and 'container B'. Wording changed to 'They show two similar cylindrical containers, container A and container B' ; Container A is smaller than container B.'	Standard mark scheme
20		Diagram enlarged. In part (a) the wording changed from ' $y=\mathrm{f}(x+1)-3$ ' to ' $y=\mathrm{f}(x+1)-5$ '. Braille only - only point A on the diagram and wording 'Point A ($-2,1$)' added above the diagram.	Standard mark scheme, but note the graph required to be drawn in part (a) is now 2 squares below that normally expected, so in the standard mark scheme replace -3 by -5
21		A pair of axes provided.	Standard mark scheme
22		Diagram enlarged.	Standard mark scheme

Mark Scheme (Results)

November 2019

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 2H

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	Two statements	C2 (C1	Two different statements Acceptable There is no 'frequency' label / y-axis is not labelled / no title for the y-axis The polygon should not be closed / have a line at the bottom / have first and last points connected $(15,6)$ has been plotted incorrectly / at $(15,8)$ / (The first point is at) 8 rather than 6 / First point is on an incorrect frequency Not acceptable There is no title / Points should be joined with a curve / x-axis doesn't start at 0 There is no label / The axes have not been labelled (x and y) The points haven't (all) been plotted correctly $10<w \leq 20$ and $30<w \leq 40$ have been plotted wrong The first point is plotted incorrectly, its at $(15,7)$ not $(15,6)$ The points have been joined up wrong / Points should not be joined in the shape of a triangle / They've connected all the points Done the midpoints rather than the numbers on the right side / The points are in the middle for one statement eg from those above)	Ignore additional statements provided no contradiction
2	127.5 and 128.5	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	for 127.5 in the correct position for 128.5 in the correct position	Accept 128.49 or $128.499 . .$.
3	18	P1 P1 P1 A1	for $240 \div 10(=24)$ or $240 \div 8(=30)$ for $3 \times$ " 24 " $(=72)$ or $7 \times$ " $24 "(=168)$ or $3 \times " 30 "(=90)$ or $5 \times$ " 30 " $(=150)$ for $3 \times$ " 24 " $(=72)$ and $3 \times$ " 30 " $(=90)$ or $7 \times$ " 24 " $(=168)$ and $5 \times$ " 30 " $(=150)$ Cao	Accept $3+7$ for 10, $3+5$ for 8

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
7	4.56×10^{-2}	M1 A1	for $0.000000342 \div 0.0000075$ OR for 0.0456 oe eg 0.456×10^{-1} or 45.6×10^{-3} or $\frac{57}{1250}$ OR for an answer of 4.56×10^{n} cao	
8	6	M1 M1 A1	$\text { for } 720 \div 40(=18) \text { or } 720 \div 30(=24)$ for a complete process $\begin{aligned} & \operatorname{eg}(720 \div 30)-(720 \div 40) \text { or " } 18 " \times 4 / 3-" 18 " \text { or " } 24 "-" 24 " \times 3 / 4 \\ & \text { cao } \end{aligned}$	
9	No (supported)	P1 P1 P1 P1 A1	for finding the area of 3 or more faces of the cuboid and adding $\operatorname{eg}(6 \times 8)+(8 \times 18)+(6 \times 18) \ldots \text { or "48"+"144"+"108"} \ldots(=300)$ complete process to find surface area of cuboid, eg $6 \times 8 \times 2+6 \times 18 \times 2+8 \times 18 \times 2(=600)$ for process to find side length of cube, eg [surface area] $\div 6$ and square rooting (= 10) (dep on previous P1) for processes to find volume of cube and volume of cuboid, eg [side length] ${ }^{3}(=1000)$ and $6 \times 8 \times 18(=864)$ for a process to find the volume of the cuboid $6 \times 8 \times 18(=864)$ and cube rooting $(=9.52 \ldots)$ to find a side length (dep on previous P1) for process to find surface area of cube, eg. ("9.52..." $)^{2} \times 6(=544.28 \ldots)$ No with 1000 and 864 OR No with 600 and 544(.28...)	Could be an addition of any three faces eg $48+$ $48+144$ etc. [surface area] must come from the addition of at least three attempts at area, but not from volume.

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	2.2	P1	works out interest for one year, eg $3550 \times 0.026(=92.3(0))$ or 3550×1.026 (=3642.3(0))	If an answer in the range is seen in working and then incorrectly rounded award full marks
		P1	for compound interest calculation, eg $3550 \times 1.026^{2}(=3736.9 \ldots)$ or for an answer given as $0.0219 \ldots$ or $1.0219 \ldots$	
		A1	answer in range 2.19 to 2.2	
14	7	M1	method to find number of combinations, eg 19×25 oe $(=475)$ or for $3325 \div 19(=175)$ or $3325 \div 25(=133)$	
		A1	cao	
15	$6 x^{3}-23 x^{2}-33 x-10$	M1	for method to find the product of any two linear expressions (3 out of no more than 4 terms correct with correct signs or 4 correct terms ignoring signs)	Note that, for example, $6 x^{2}+7 x$ or $7 x+2$ are regarded as three terms in the expansion of $(3 x+2)(2 x+1)$ First product must be quadratic but need not be simplified or may be simplified incorrectly
		M1	for method of multiplying out remaining products, half of which are correct (ft their first product)	
		A1	cao	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
16	$\frac{52}{72}$	P1	$\text { for } \frac{4}{9} \times \frac{3}{8}\left(\frac{12}{72}\right) \text { or } \frac{4}{9} \times \frac{5}{8} \text { or } \frac{5}{9} \times \frac{4}{8}\left(\frac{20}{72}\right)$	Accept equivalent fractions, decimals ($0.72 \ldots$) or percentages (72.22.... \%)
		P1 A1		
		A1	for $\frac{52}{72}, \frac{13}{18}$ oe SC B1 for answer of $\frac{56}{81}$ (replacement)	
17	61		angle $O A D=90$, may be marked on diagram method to work out angle $O A B(=29)$ cao	Angle could be shown by a right-angle symbol Correct method can be implied from angles on the diagram if no ambiguity or contradiction. Reasons need not be given. Award 0 marks for an answer of 61 with no other working.
		M1 A1		
18	$\begin{gathered} \text { Bar of height } \\ 3.2 \end{gathered}$	M1	$\begin{aligned} & \text { method to find any frequency } \\ & \text { eg } 1.2 \times 2.5(=3) \text { or } 2 \times 2.5(=5) \text { or } 2.8 \times 5(=14) \\ & \quad \text { or } 0.8 \times 12.5(=10) \end{aligned}$ or method to use areas eg $12 \times 5(=60)$ or $20 \times 5(=100)$ or $28 \times 10(=280)$ or $8 \times 25(=200)$	Accept equivalent methods proportional to those shown
		M1	complete method to find total frequency for the four intervals $\begin{aligned} & \text { eg " } 3 ">+" 5 "+" 14 "+" 10 "(=32) \\ & \text { or " } 60 "+" 100 "+" 280 "+" 200 "(=640) \end{aligned}$	
		C1		

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	155	M1	for a complete method to find the volume of the hemisphere, eg $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4.2^{3}$ oe	If an answer in the range is seen in working and then incorrectly rounded award full marks
		A1	answer in range 155 to 155.2	
20	160(supported)	B1 M1	stating bound of 10.85 or 10.95 using both UB and LB to work out value of d eg [UB of $c]^{3} \div 8$ and $[\mathrm{LB} \text { of } c]^{3} \div 8$ or gives a bound of $159.66 \ldots$ from correct working or gives a bound of $164.11 \ldots$ from correct working	Accept $10.94 \dot{9}$ or $10.9499 \ldots$ for 10.95 $\begin{aligned} & 10.9<\mathrm{UB} \leq 10.98 \\ & 10.85 \leq \mathrm{LB}<10.9 \end{aligned}$ Accept bounds rounded or truncated to at least 4 sig fig
		M1		
		A1	for $159.66 \ldots$ and $164.11 \ldots$ from correct working	
		C1	for 160 from 159.66... and $164.11 \ldots$ with a supporting reason eg "since both UB and LB round to 160 "	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
21 (a)	52.5	P1	starts to find area under graph, $\text { eg } \frac{30 \times 12}{2}(=180) \text { or } 50 \times 12(=600) \text { or } \frac{20 \times 12}{2}(=120)$	
		P1	complete process to find area under graph, eg $\frac{30 \times 12}{2}+50 \times 12+\frac{20 \times 12}{2}(=900)$	
		P1	starts process to find half way time, eg (("900" $\div 2$) - 180$) \div 12(=22.5)$	
		A1	52.5 oe	
(b)	Comparison	C1	acceptable comparison	
			Acceptable (acceleration) during first part is positive but (acceleration) during last part is negative / deceleration (acceleration is) greater during the last part than during the first part gradient is steeper in the last part / longer to speed up than slow down speed / (acceleration) is increasing at start and decreasing at end (acceleration) is slower in the first part (acceleration) is ascending in the first part and descending in the last part 0.4 is the first part and -0.6 in the last part Not acceptable goes down in the last part speed is greater in last part than first part	

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
22 (a)	163 or 164	P1	uses formula eg 1.2 $\times 200-50(=190)$	
		P1	for complete process, eg May: $1.2 \times$ " 190 " $-50(=178)$ and June: $1.2 \times$ " 178 " $-50(=163.6)$	
		A1	for 163 or 164	
(b)	Statement	C1	(dep P1) ft statement, eg there won't be any rabbits, fewer rabbits, decrease	
$23 \quad$ (a)	Shown	C1	for a method to find the area of half of the parallelogram or of the whole parallelogram, eg $1 / 2(2 x-1)(10-x) \sin 150$ or $1 / 2(2 x-1)(10-x) \times \frac{1}{2}$ oe or $(2 x-1)(10-x) \sin 150$ or $(2 x-1)(10-x) \times 1 / 2$ oe	
		C1	for a correct expansion of the whole area eg $1 / 2\left(20 x-10-2 x^{2}+x\right)$ or $1 / 2\left(-2 x^{2}+21 x-10\right)$ or $-x^{2}+10.5 x-5$	
		C1	complete chain of reasoning with fully correct algebra dealing with the inequality eg $x^{2}-10.5 x+5<-15 \text { or } x^{2}-10.5 x+20<0 \text { or } 2 x^{2}-21 x+10<-30$ which lead to $2 x^{2}-21 x+40<0$	
	$2.5<x<8$	M1	for factorising, $(2 x-5)(x-8)$	Could use the formula
		A1	for critical values, 2.5, 8	
		A1	for any statement that x is greater than 2.5 and x is less than 8	Need not be given as an inequality statement

Paper: 1MA1/2H				
Question	Answer	Mark	Mark scheme	Additional guidance
24	Description	C2 (C1	for (rotation) 90° clockwise about ($-1,0$) or (rotation) 90° anticlockwise about $(-1,6)$ or (rotation) 180° about $(-1,2)$ or (rotation) 180° about $(-1,4)$ for $(-1,0)$ or $(-1,6)$ or $(-1,2)$ or $(-1,4))$	Award 0 marks if there is reference to other transformations eg coordinates given as vectors (which is a translation)
25	9.75	P1 P1 B1 P1 A1	process to find the gradient of $\mathbf{L}\left(=-\frac{3}{2}\right)$ process to find the gradient of the perpendicular line \mathbf{M} eg use of $-\frac{1}{m}$ or states gradient as $\frac{2}{3}$ or $y=\frac{2}{3} x+c$ (indep) gives y coordinate of $B=8.5$ oe (dep P2) process to find x coordinate of $C(=3)$ or y coordinate of $C(=4)$ eg the first stage of solving equations or using elimination by substitution, to find a coordinate of C. $9.75 \mathrm{oe}$	Could be indicated other ways, eg 8.5 on the y axis of a diagram ft their linear equation for M with L ; allow some error in manipulation of these linear equations as long as the overall process is correct. Award 0 marks for a correct answer with no supportive working.

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 2H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

| PAPER: 1MA1_2H | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Question | |
| 1 | |

PAPER: 1MA1_2H		
	Modification	Mark scheme notes
11	Box plots changed as shown. Box Pot M Box Plot A Wording added 'They show box plot M and box plot A .' Megan's box plot labelled 'Box plot M' and Amy's box plot labelled 'Box plot A.' Horizontal axes labels moved to the left. Megan's box plot: Lowest 25, Highest 75, Median 55, IQR 40-65 ($=25$), range $=50$ Amy's box plot: Lowest 25, Highest 70, Median 40, IQR 35-60 ($=25$), range $=45$	Part (a): C1 explanation eg ' No ' the median is 55 Part (b): C 1 : a correct comparison of medians eg the median weight for Megan was greater than the median weight for Amy C1: a correct comparison of a measure of spread eg the IQR of weights for Megan was the same as the IQR of weights for Amy For the award of both marks at least one of the comparisons must be in the context of the question Additional guidance: Simply quoting values for median, range and IQR is insufficient, they must be compared Figures given must be correct. Comparisons can relate to the range or the IQR
12	Diagram enlarged. Angle $E A D$ marked with an angle arc. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme
15	MLP only: x changed to y.	Standard mark scheme with letters changed as indicated.
16	Wording added 'Each card is numbered from 1-9.'	Standard mark scheme
17	Diagram enlarged. Angle moved outside of the angle arc and the angle arc made smaller.	Standard mark scheme

PAPER: 1MA1_2H

Question		Modification	Mark scheme notes
18		Histogram changed as shown below. Diagram enlarged. Right axis labelled. Shading changed to dotty shading. Axes labels moved to the left of the horizontal axis and above the vertical axis. Wording added 'It shows an incomplete histogram.' Grid extended to 5 on the vertical axis.	Mark scheme adjusted as follows: M1: method to find any frequency, eg $2 \times 5(=10)$ or $3 \times 5(=15)$ or $1 \times 10(=10)$ or $2 \times 2.5(=5)$ oe or method to use areas eg $2 \times 4(=8)$ or $2 \times 6(=12)$ or $4 \times 2(=8)$ or $1 \times 4(=4)$ oe complete method to find total frequency for the four intervals eg " $10+" 15 "+" 10 "+" 5 "(=40)$ or " $8 "+" 12 "+" 8 "+" 4 "(=32)$ C1: Bar of height 4 (8 squares high)
19		Diagram enlarged. Wording added for MLP only 'A hemisphere is half a sphere.' Formula placed above hemisphere. Wording for Braille only: 'The model represents a hemisphere with diameter 8.4 cm .'	Standard mark scheme
20		Braille only- c changed to r and d changed to s	Standard mark scheme with the letters changed as indicated.

PAPER: 1MA1_2H			
Question		Modification	Mark scheme notes
21		Diagram enlarged. Right axis labelled. Vertical axis marked in units of 4. Axes labels moved to the left of the horizontal axis and above the vertical axis.	Standard mark scheme
23		Diagram enlarged. Angle moved outside of the angle arc and the angle arc made smaller. Wording added 'with sides $(2 x-1) \mathrm{cm}$ and $(10-x) \mathrm{cm}$. An angle of 150° is marked'	Standard mark scheme
24		Diagram enlarged. Shading changed to dotty shading. Wording added 'It shows square $A B C D$ on a coordinate grid.' Shape provided for all candidates labelled $A B C D$ on both sides. Wording added 'A cut out shape may be available if you wish to use it.'	Standard mark scheme

Mark Scheme (Results)

November 2019

Pearson Edexcel GCSE (9-1)
In Mathematics (1MA1)
Higher (Calculator) Paper 3H

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
1 (a) (b)	$x^{2}-4 x-45$ $3 x(3 x+2)$	M1 A1 B2 (B1	for 3 of 4 terms correct or 4 terms correct ignoring signs cao for $3 x(3 x+2)$ for $3\left(3 x^{2}+2 x\right)$ or $x(9 x+6)$ or $3 x(a x+b)$ where a and b are integers or $(3 x+2)$ as a factor)	3 terms correct can be implied, eg $x^{2}-4 x+c$
2 (a) (b)	$157.668(255)$ 157.7	M1 A1 B1	for 836.4 or 5.304(809139) or 28.141 or a truncated or rounded version of 157.668255 to no less than 3 sf for $157.668(255)$ ft from part (a) provided answer to (a) has at least 5 sf	Answer must be given to at least 3 decimal places rounded or truncated Accept a clear indication of the decimal point. Check first 3 decimal places only
3	35 to 42	M1 A1	for drawing a suitable line of best fit or for a line from $x=34$ or for a point marked on the grid at (34,y), y in the range 33 to 44 answer in the range 35 to 42	Line at $x=34$ does not have to be full length of grid but should be in or reach the data set. Acceptable values for the data set are $y=33$ to $y=44$

Paper: 1MA1/3H					
Question	Answer	Mark	Mark scheme	Additional guidance	
4	18.6	M1	for finding 4 products within intervals (including end points)	$\operatorname{Min} f x$	$\operatorname{Max} f x$
				5	10
				20	30
				105	140
				160	200
		M1	$\begin{aligned} & \text { for } \Sigma^{\prime \prime} f x " \div(1+2+7+8) \\ & \text { or }(7.5 \times 1+12.5 \times 2+17.5 \times 7+22.5 \times 8) \div(1+2+7+8) \\ & \text { or }(" 7.5 "+" 25 "+" 122.5 "+" 180 ") \div " 18 \text { " } \\ & \text { or " } 335 " \div " 18 " \end{aligned}$	$\Sigma " f x "$ must come from 4 products $f x$ within intervals (including end points)	
		A1	for 18.6(111...)		
5	37000	B1	cao		
6	50	B1	for finding the time difference, eg, 1hr 18 mins or 78 mins oe	Allow 1.18 for this mark 118 scores B0	
		P1	for correct process to convert minutes to hours, eg $18 \div 60(=0.3)$ or $78 \div 60(=1.3)$ or for a correct process to convert speed in miles per minute to mph eg "0.833.." $\times 60$	For a conversion of time or speed	
		P1	for using speed $=$ distance \div time eg, $65 \div$ [time $]$ or $65 \div 78(=0.833$.. $)$	[time] is what the candidate clearly indicates as time difference	
		A1	cao		
			SCB2 for $83(.333 \ldots)$ seen as the answer		

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
7 (a)	3.246×10^{7}	B1	cao	
(b)	0.00496	B1	cao	
(c)	No with explanation	C1	No and explanation that B is bigger as the power of 10 is bigger. Acceptable examples She is incorrect as 10^{8} is smaller than 10^{9} No, because B has more digits than A No, A is millions but B is billions No, if you subtract A from B the answer is positive (but if you subtract B from A the answer is negative) $A=621200000, B=4730000000$, B is bigger No because she did not take into account standard form No as when you find the ordinary number B is greater than A Not acceptable examples Yes... $\mathrm{A}=5$ zeros after the number where as $\mathrm{B}=7$ zeros after the number No as 4.73×10^{9} is one more than 6.212×10^{8} 6.212 is to the power of 8 and 4.73 is to the power of 9 so there is an extra digit Asma is wrong because she has more numbers behind the decimal point which means that it will be bigger than A No B has more zeros	Decision eg "No" may be seen by the question. "She is incorrect" is equivalent to "no"

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/3H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{4}{*}{8} \& \multirow[t]{4}{*}{45} \& P1 \& \begin{tabular}{l}
for \(180-117(=63)\) \\
or states, or uses, exterior angle \(+x=117\)
\end{tabular} \& \begin{tabular}{l}
Angles may be shown on the diagram. \\
Any angle labelled correctly as 63 and not contradicted scores this mark
\end{tabular} \\
\hline \& \& P1 \& for process to find the exterior or the interior angle of the pentagon, eg \(360 \div 5(=72)\) or \(180-(360 \div 5)(=108)\) or \(((5-2) \times 180) \div 5\) (=108) \& Exterior \(=108\) or interior \(=72\) does not score the mark \\
\hline \& \& P1 \& for a complete process to find \(x\), eg 180 - " 72 " - " 63 " or " 108 " - " 63 " or 117 -" 72 " \& \\
\hline \& \& A1 \& cao \& An answer of 45 with no supporting working scores 0 \\
\hline 9 \& Enlargement \& \[
\begin{aligned}
\& \mathrm{B} 2 \\
\& \text { (B1 }
\end{aligned}
\] \& \begin{tabular}{l}
vertices at \((2.5,1)(2.5,6)(5,6)\) \\
for triangle of the correct size and orientation in the wrong position or a correct enlargement of a different scale factor centre \((0,1)\) or correct orientation with 2 of 3 vertices correct)
\end{tabular} \& \\
\hline \begin{tabular}{l}
10 (a) \\
(b)
\end{tabular} \& 8.5

$4(y+3)$ \& | M1 |
| :--- |
| M1 |
| A1 |
| B1 | \& for multiplying both sides by 7 as a first step eg $9+x=7(11-x)$ or dividing each term on the left hand side by $7 \operatorname{eg} \frac{9}{7}+\frac{x}{7}=11-x$ (dep M1) for method to isolate the x terms on one side oe

$$
4(y+3) \text { or } 4 y+12
$$ \& $\times 7$ written near the equation is not enough for this mark

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/3H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{3}{*}{14} \& \multirow[t]{3}{*}{\[
\frac{13}{20}
\]} \& P1 \& \multirow[t]{3}{*}{\begin{tabular}{l}
for finding the fraction who chose either soup (\(\frac{2}{5}\) oe) or chose prawns (\(\frac{3}{5} \mathrm{oe}\)) \\
or for process to share any number in the ratio \(2: 3\) eg \(100 \div(2+3) \times 2(=40)\) \\
for a process that could lead to the proportion who chose lasagne or curry for either starter, eg sharing \(40 \%\) (soup) in the ratio \(5: 3\) \\
or sharing \(60 \%\) (prawns) in the ratio \(1: 5\)
\[
\text { or } \frac{2}{5} \times \frac{5}{8} \text { or } \frac{2}{5} \times \frac{3}{8} \text { or } \frac{3}{5} \times \frac{1}{6} \text { or } \frac{3}{5} \times \frac{5}{6}
\] \\
or for continuing the process with their starting number to find the number who chose lasagne or curry for either starter \\
for a complete process to find the proportion who chose curry for both starters, \(\operatorname{eg}\left(\frac{2}{5} \times \frac{3}{8}\right)+\left(\frac{3}{5} \times \frac{5}{6}\right)\) or to find the number who chose curry for both starter for their starting number \\
\(\frac{13}{20}\) or equivalent fraction
\end{tabular}} \& \begin{tabular}{l}
Starting number 100 \\
Soup : Prawn 40:60
\end{tabular} \\
\hline \& \& P1 \& \& \[
\begin{array}{ll}
\text { L:C } \& \text { L:C } \\
25: 15 \& 10: 50
\end{array}
\] \\
\hline \& \& P1

A1 \& \& $15+50=65$ and $\frac{15+50}{100}$

\hline
\end{tabular}

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
15	Proof	M1	for correct expressions for two consecutive even numbers eg $2 n$ and $2 n+2$	$\begin{aligned} & (2 n)^{2}+(2 n+2)^{2} \\ & =4 n^{2}+4 n^{2}+8 n+4 \\ & =8 n^{2}+8 n+4=4\left(2 n^{2}+2 n+1\right) \end{aligned}$
		M1	(dep M1) for expanding both expressions with at least one expansion fully correct eg $4 n^{2}$ and $4 n^{2}+4 n+4 n+4$ or for factorising both terms and intention to square correctly eg $(2 n)^{2}$ and $2^{2}(n+1)^{2}$	$\begin{aligned} & \text { Or } \\ & (2 n)^{2}+(2 n-2)^{2} \\ & =4 n^{2}+4 n^{2}-8 n+4 \\ & =8 n^{2}-8 n+4=4\left(2 n^{2}-2 n+1\right) \end{aligned}$
		A1	complete proof	Or $\begin{aligned} & (2 n)^{2}+(2 n+2)^{2} \\ & =4(n)^{2}+4(n+1)^{2} \\ & =4\left(n^{2}+(n+1)^{2}\right) \end{aligned}$
16	-7.5	M1	for stating a correct relationship, eg $y=\frac{k}{x^{2}}$ or $8=\frac{k}{2.5^{2}}$	Accept $y \alpha \frac{k}{x^{2}}$ where k may be 1
		A1	for $k=50$, could be seen in an equation	
		A1	-7.5 oe	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
17	2.7 and -0.7	M1	for $x^{2}-3=2 x-1$ oe or $x^{2}-3-2 x+1(=0)$ or completing the square eg $(y=)(x-1)^{2}-1-2$	
		M1	(dep M1) draws graph of $y=2 x-1$ or drawing the translated graph or describing the translation in words or $-1.7+1(=-0.7)$ or $1.7+1$ (=2.7)	Line segments required For 1.7 allow from 1.6 to 1.8 For -1.7 allow from -1.8 to -1.6
		M1	shows the points of intersection clearly for the given quadratic graph and linear graph or for one correct solution from appropriate supportive working	Points indicated or attempt to read off x-axis at the appropriate points - maybe indicated by dashes
		A1	for x in the range 2.6 to 2.8 and -0.6 to -0.8 SCB2 for plotting $y=2 x+1$ and values for x in the range -1.1 to -1.3 and 3.1 to 3.3	No marks will be awarded for correct answers only
18	1.95	P1	for correct substitution into the cosine rule, $\operatorname{eg} 3.4^{2}=6.1^{2}+6.2^{2}-2 \times 6.1 \times 6.2 \times \cos B C A$	Can be any angle within triangle $A B C$
		P1	for a full process to find $B C A$ eg $(\cos B C A=) \frac{6.1^{2}+6.2^{2}-3.4^{2}}{2 \times 6.1 \times 6.2}$ or $(B C A=) 32(.08046913 \ldots)$	P2 can be awarded for $B C A=32(.08046913 \ldots)$
		P1	correct substitution into the sine rule, $\operatorname{eg} \frac{D C}{\sin \left(" 32.08 \ldots . .1 \times \frac{2}{5}\right)}=\frac{6.2}{\sin \left(180-" 32.08 \ldots . \ldots-\left(" 32.08 \ldots . .4 \times \frac{2}{5}\right)\right.}$	
		P1	for complete process to find $D C \operatorname{eg}(D C=) \frac{6.2 \times \sin " 12.832 "}{\sin " 135.088^{\prime \prime}}$	
		A1	Answer in the range 1.94 to 1.951	Must not come from incorrect processing

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
19	3.4	M1 M1 A1	for drawing a suitable tangent at $t=6$ for a full method to find the gradient of the tangent at $t=6$, eg $20 \div 5.8$ answer in the range 3.05 to 3.7	Use of change in y over change in x Answers of $\frac{10}{6}$ oe scores no marks
20	$n^{2}-2 n$	M1 A1	for correct deduction from differences, eg 2 nd difference of 2 implies $1 n^{2}$ or gives a quadratic expression which includes the term $1 n^{2}$ or states $1,4,9,16,25$ and deduces $2,4,6,8,10$ oe	
21	$\frac{1}{81}$	M1 A1	for finding the probability of heads eg $\sqrt[4]{\frac{16}{81}}\left(=\frac{2}{3}\right)$ or for finding the probability of tails $1-\sqrt[4]{\frac{16}{81}}\left(=\frac{1}{3}\right)$ oe	Seeing a probability of $\frac{2}{3}$ or $\frac{1}{3}$ is enough for this mark

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
22	$7 x$	M1	multiplication by reciprocal, eg $\frac{7(x-2)}{(x-2)(x+6)} \times \frac{x(x+6)(x-6)}{x-6}$	Independent mark, may be awarded at any point
		M1	for factorising the numerator or denominator of the $1^{\text {st }}$ fraction, eg $\frac{7(x-2)}{(x-2)(x+6)}$ or $\frac{7(x-2)}{x^{2}+4 x-12}$ or $\frac{7 x-14}{(x-2)(x+6)}$	
		M1	for factorising the denominator of the second fraction, $\operatorname{eg} \frac{x-6}{x(x+6)(x-6)}\left(=\frac{1}{x(x+6)}\right)$	
		A1	completing the algebra to reach $7 x$	
23	264	P1	correct substitution into the volume formula, eg $56.8=\frac{1}{3} \times \pi \times r^{2} \times 3.6$	
		P1	completes process to find base radius or the value of r^{2}, eg $r=$ $\sqrt{\frac{56.8 \times 3}{\pi \times 3.6}}(=3.88158 \ldots) \text { or } \mathrm{r}^{2}=\frac{56.8}{1.2 \pi}(=15.066)$	
		P1	Uses Pythagoras to find the sloping length, eg $\sqrt{4.88 \ldots{ }^{2}+3.6^{2}}(=5.29 \ldots .$.	
		P1	process to find an equation in $A O B$, eg $\pi \times$ " 3.88 " \times " 5.29 " $=\frac{A O B}{360} \times \pi$ \times " 5.29 " ${ }^{2}$ or $\frac{A O B}{360} \times \pi \times 2 \times " 5.29 "=2 \times \pi \times " 3.88$ " or $\frac{A O B}{360} \times " 5.29 "=" 3.88 "$	$A O B$ does not need to be the subject of the equation
		A1	answer in the range 263.9 to 264.1	

Paper: 1MA1/3H				
Question	Answer	Mark	Mark scheme	Additional guidance
24	4:3	P1	Process to find a missing vector using the given ratios as fractions, eg. $\frac{1}{3}$ of $\overrightarrow{O X}\left(=\frac{1}{3} \mathbf{a}\right)$ or. $\frac{1}{4}$ of $\overrightarrow{O Y}\left(=\frac{1}{4} \mathbf{b}\right)$	
		P1	for a process to use $\overrightarrow{Z O}=\overrightarrow{Y X}=\mathbf{a}-\mathbf{b}$ oe	Might be embedded in their answer for ZP
		P1	for a process to find either $\overrightarrow{Z P}$ or $\overrightarrow{Z R}$ in terms of \mathbf{a} and \mathbf{b}, eg. either $\overrightarrow{Z P}=\mathbf{a}-\mathbf{b}+\frac{1}{3} \mathbf{a}$ or $\overrightarrow{Z R}=\mathbf{a}-\mathbf{b}+\frac{1}{4} \mathbf{b}$	The award of this mark implies the first two process marks.
		P1	for a process to write $\overrightarrow{Z P}$ and $\overrightarrow{Z R}$ as multiples of the same vector, eg. multiplying both by 12 to get the ratio, $\frac{4}{3}(\mathbf{a}-0.75 \mathbf{b})$ and $\mathbf{a}-0.75 \mathbf{b}$ respectively	
		A1	oe	

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 3H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5^{\circ}$
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1/3H			
Question		Modification	Mark scheme notes
9		Wording added 'It shows triangle A and triangle B on a coordinate grid.' Diagram enlarged. Label removed from inside triangle. Shading removed. Enlargement drawn at $(2.5,1),(2.5,6)(5,6)$ Triangles labelled as 'triangle A' and 'triangle B'. Cross removed from $(0,1)$ on the diagram. Grid cut at 7 on the x axis and 6 on the y axis. Grid cut before the x and y axes labels. Question wording now 'Describe fully the transformation that maps triangle A onto triangle B.' Three answer lines provided. Braille only: Two labelled shapes, triangle A and triangle B.	Amended mark scheme as follows: B1 for "enlargement scale factor 2.5 " B1 for "centre $(0,1)$ Award B0 for any mention of a different transformation.
10	(a)	MLP only: x changed to y.	Standard mark scheme but note letter change.
11		Diagram enlarged.	Standard mark scheme
12		Diagrams enlarged. Key moved above and to the left of the stem and leaf diagram. Horizontal line added to the base of the stem and leaf diagram. Wording changed to 'Look at Diagram 1 and Diagram 2 for Question 12... Diagram 1 shows a stem and leaf diagram. Diagram 2 shows a grid.' Wording added 'below Diagram 1'. Numbers in the stem and leaf changed (see table below)	Amended mark scheme: P1 for correctly identifying one of the LQ (185), median (195) or UQ (205) from the stem leaf M1 for showing a box and at least 3 correctly plotted values from 175,185 , 195, 205, 215 A1 for a fully correct box plot

PAPER: 1MA1/3H

Question		Modification			Mark scheme notes
14		Wording added 'shown in the table.'			
17		Question wording $1^{\text {st }}$ line changed to 'It shows the graph of $y=x^{2}-4$ ' Question demand changed to 'Use the graph to find estimates to the equation $x^{2}-2 x-3=0$.' Diagram enlarged and changed (see below). The graph line will go through $(-3,5)$ and $(3,5)$.			Mark scheme first P1 now process to rearrange the equation to $x^{2}-4=2 x-1$ Otherwise standard mark scheme.
18		Diagram enlarged.			Standard mark scheme
19		Diagram enlarged. Right axis labelled. Axes labels moved to the left of the horizontal axis and above the vertical axis.			Standard mark scheme

PAPER: 1MA1/3H			
Question		Modification	Mark scheme notes
23		Diagrams enlarged and model and shape may be provided. Sector $O A C B$ labelled as Diagram 1 and the cone labelled as Diagram 2. Add wording 'Diagram 1 shows a sector $O A C B \ldots$ Diagram 2 shows a hollow cone...' There may be a model of the hollow cone and a cut out shape of the sector $O A C B$. Wording added 'The formulae are shown above Diagram 1 and Diagram 2 in the Diagram Book.' Dashed lines made longer and thicker.	Standard mark scheme
24		Diagram enlarged.	Standard mark scheme

